Version Control Mastery: Harnessing Git for Collaborative Software Development – Branching Strategies, Pull Requests, and Resolving Merge Conflicts

Version control systems like Git are essential for collaborative software development, enabling teams to work on the same codebase simultaneously without overwriting each other’s changes. Imagine a bustling kitchen with multiple chefs working on different parts of a meal. Just as chefs must coordinate and communicate to avoid culinary disasters, developers use branching strategies to isolate their work and pull requests to propose changes for review.

When creating a new feature, developers typically create a separate branch from the main codebase. This allows them to make changes without affecting the stable version. Once the feature is complete, they submit a pull request, which is like a chef presenting a new dish for the head chef’s approval. The team can review the changes, provide feedback, and ensure the new code integrates smoothly with the existing codebase.

However, conflicts can arise when multiple developers modify the same lines of code in different branches. Git’s merge conflict resolution process is like a culinary mediation, where developers must decide how to combine the conflicting changes. By carefully reviewing and discussing the differences, developers can merge the branches and ensure a cohesive final product.

Mastering version control with Git empowers software teams to collaborate efficiently, track changes, and maintain a stable codebase. By leveraging branching strategies, pull requests, and effective conflict resolution, developers can work together seamlessly, much like a well-orchestrated kitchen crew creating a delightful software feast.

Automated Testing: The Cornerstone of Reliable and Evolvable Software Systems – Unit Testing, Integration Testing, and Test-Driven Development Best Practices

In the fast-paced world of software development, automated testing has emerged as an indispensable practice for building reliable and maintainable systems. Automated tests act as a safety net, catching bugs early and providing confidence that changes to the codebase haven’t introduced unintended side effects.

At the foundation of automated testing lie unit tests. These tests focus on individual units of code, such as functions or classes, ensuring they behave correctly in isolation. By writing unit tests, developers can verify the correctness of their code at the most granular level. For example, when building a e-commerce system, unit tests would verify that the cart total is calculated correctly based on the items and quantities added.

As the system grows, integration tests become crucial. These tests validate how different units work together, catching issues that arise from their interactions. Integration tests often involve testing APIs, database queries, or user interfaces. Continuing with the e-commerce example, an integration test would ensure that adding an item to the cart, proceeding to checkout, and completing the payment flow works seamlessly.

To maximize the benefits of automated testing, many teams adopt test-driven development (TDD). In TDD, developers write tests before implementing the functionality. This approach helps define clear requirements, keeps the code focused, and encourages modular design. TDD fosters a tight feedback loop, enabling developers to quickly identify and fix issues.

Automated testing, encompassing unit tests, integration tests, and TDD, forms the cornerstone of reliable and evolvable software systems. By investing in a robust test suite, teams can catch bugs early, refactor with confidence, and deliver high-quality software that meets user expectations

Taming Complexity: Modularity, Abstraction, and Information Hiding in Software Architecture – Strategies for Decomposing Systems and Managing Dependencies

In this lesson, we will explore how software engineers manage complexity in large systems through the principles of modularity, abstraction, and information hiding. Imagine you are tasked with designing a complex e-commerce platform with millions of users. To tackle this daunting challenge, you decompose the system into modules – distinct, functional units that encapsulate related data and behaviors.

Each module, such as the product catalog, shopping cart, or payment processing, is designed with clear interfaces that abstract away internal complexities. These abstractions allow modules to interact through well-defined contracts while hiding implementation details – a concept known as information hiding.

By decomposing the system into loosely coupled, highly cohesive modules, you limit the impact of changes and allow teams to work in parallel. Modularity also enables reuse – common functionality can be shared across the system.

However, managing dependencies between modules is critical. Dependency graphs and matrices help visualize and control these relationships. Architectural patterns like layering and service-orientation provide proven structures for organizing modules and managing dependencies.

Ultimately, by applying modularity, abstraction, and information hiding, and by actively managing dependencies, software engineers can tame even the most complex systems, enabling them to be developed, understood, and evolved in a sustainable manner. The e-commerce system, thanks to its modular architecture, can withstand the test of continuous growth and change.

Building Robust and Maintainable Codebases with the SOLID Design Principles – Exploring Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation, and Dependency Inversion

The SOLID design principles provide a set of guidelines for writing maintainable, flexible, and extensible code. Let’s explore a real-world example to see how these principles can be applied in practice.

Imagine a software system for managing a library. Initially, the system has a single `Book` class responsible for handling all book-related functionality, such as storing book details, rendering book information on the UI, and persisting data to a database. Over time, as the system grows, this single class becomes bloated and difficult to maintain.

By applying the SOLID principles, we can refactor the system into a more modular and maintainable design:

1. Single Responsibility Principle: We split the `Book` class into separate classes, each with a single responsibility. The `Book` class now only handles storing book details, while separate classes like `BookRenderer` and `BookRepository` handle UI rendering and database persistence, respectively.

2. Open-Closed Principle: We create abstractions for the rendering and persistence logic using interfaces like `IBookRenderer` and `IBookRepository`. This allows the system to be open for extension (e.g., adding new rendering formats) but closed for modification of existing code.

3. Liskov Substitution Principle: We ensure that any subclasses of `Book`, such as `Ebook` or `Audiobook`, can be used interchangeably with the base `Book` class without breaking the system’s behavior.

4. Interface Segregation Principle: Instead of having a single large interface for all book-related operations, we create smaller, focused interfaces like `IBookDetails`, `IBookRenderer`, and `IBookPersistence`. This allows clients to depend only on the interfaces they need.

5. Dependency Inversion Principle: High-level modules (e.g., the main application logic) depend on abstractions (interfaces) rather than concrete implementations. This enables loose coupling and easier testability.

By adhering to the SOLID principles, the library management system becomes more modular, maintainable, and adaptable to future changes. Each component has a clear responsibility, making the codebase easier to understand and modify.

From Chaos to Clarity: The Fundamental Principles of Structured Software Design – Embracing Modularity, Cohesion, and Coupling for Robust Architectures

In the realm of software engineering, the path from a jumbled mess of code to an elegant, maintainable system is paved with the fundamental principles of structured design. At the heart of this transformative journey lie the concepts of modularity, cohesion, and coupling.

Modularity is the practice of breaking down a complex system into smaller, more manageable units called modules. Each module encapsulates a specific functionality, hiding its internal details and exposing a well-defined interface. By embracing modularity, software engineers can tame the chaos, making the system more comprehensible, testable, and reusable.

However, creating modules is not enough; they must also exhibit high cohesion. Cohesion refers to the degree to which the elements within a module are related and work together towards a single, well-defined purpose. A highly cohesive module is focused, self-contained, and easier to understand and maintain. It is the glue that holds the pieces together, ensuring that each module is a unified and purposeful entity.

On the flip side, coupling represents the dependencies and interconnections between modules. Low coupling is the goal, as it minimizes the ripple effect of changes throughout the system. By keeping modules loosely coupled, software engineers can create systems that are flexible, adaptable, and resilient to change. Loose coupling allows modules to be developed, tested, and modified independently, promoting parallel work and reducing the impact of modifications.

The interplay of modularity, cohesion, and coupling forms the foundation of structured software design. By decomposing a system into cohesive modules with well-defined interfaces and minimal coupling, software engineers can navigate the complexities of software development with clarity and confidence. This approach lays the groundwork for building robust, maintainable, and scalable software architectures that can withstand the test of time

Jetpack Compose Animations: A Quick Guide

Jetpack Compose, the modern Android UI toolkit, has revolutionized how we build user interfaces. With its declarative approach, Compose simplifies UI development and makes it more intuitive. One of the exciting aspects of Compose is its built-in animation capabilities. In this blog post, we’ll explore how to create engaging animations using Jetpack Compose.

Animate Common Composable Properties

Compose provides convenient APIs for animating common properties of a composable. Let’s dive into some examples:

1. Animating Visibility

You can use AnimatedVisibility to hide or show a composable. Here’s a basic example:var visible by remember { mutableStateOf(true) } AnimatedVisibility(visible) { // Your composable here // ... }

The enter and exit parameters of AnimatedVisibility allow you to configure how a composable behaves when it appears and disappears. Alternatively, you can animate the alpha over time using animateFloatAsState:val animatedAlpha by animateFloatAsState( targetValue = if (visible) 1.0f else 0f, label = "alpha" ) Box( modifier = Modifier .size(200.dp) .graphicsLayer { alpha = animatedAlpha } .clip(RoundedCornerShape(8.dp)) .background(colorGreen) .align(Alignment.TopCenter) ) { // Your content here }

Keep in mind that changing the alpha keeps the composable in the composition, whereas AnimatedVisibility eventually removes it.

2. Animating Background Color

To animate the background color of a composable, use animateColorAsState:val animatedColor by animateColorAsState( if (animateBackgroundColor) colorGreen else colorBlue, label = "color" ) Column( modifier = Modifier.drawBehind { drawRect(animatedColor) } ) { // Your composable here }

This approach is more performant than using Modifier.background(), especially when animating colors over time.

Practical Magic with Animations

Compose offers many other animation mechanisms, such as animating size, position, and more. For a comprehensive understanding, explore the full set of API options in the Compose Animation documentation.

In summary, Jetpack Compose empowers developers to create delightful and interactive UIs with ease. Whether you’re building a simple app or a complex interface, animations play a crucial role in enhancing the user experience. Happy animating! 🚀

Source: Conversation with Bing, 3/24/2024
(1) Quick guide to Animations in Compose | Jetpack Compose | Android Developers. https://developer.android.com/jetpack/compose/animation/quick-guide.
(2) Quick Start Guide on Animations in Jetpack Compose – Finotes Blog. https://www.blog.finotes.com/post/quick-start-guide-on-animations-in-jetpack-compose.
(3) Animate Your Jetpack Compose UI: A Comprehensive Overview. https://blog.realogs.in/animating-jetpack-compose-ui/.
(4) Jetpack compose: Custom animations | by Hardik P | Canopas. https://blog.canopas.com/jetpack-compose-custom-animations-550dcdcded83.
(5) Animations in Jetpack Compose: animateContentSize – Medium. https://medium.com/@timacosta06/animations-in-compose-animatecontentsize-1eca1194ca1e.

Demystifying LazyColumns in Jetpack Compose

Let’s dive into the world of Jetpack Compose and explore how to use LazyColumn effectively. 🚀

Introduction

Jetpack Compose is a modern Android UI toolkit that simplifies building native user interfaces. One of its powerful features is the LazyColumn, which provides an efficient way to display large lists. Think of it as the successor to the good old RecyclerView and its adapter.

In this blog post, we’ll explore what LazyColumn is, how it works, and how you can leverage it to create dynamic and performant lists in your Android apps.

What is LazyColumn?

LazyColumn is a vertically scrolling list that only composes and lays out the currently visible items. Unlike a regular Column, which renders all items regardless of visibility, LazyColumn is “lazy.” It means that it efficiently handles large lists by rendering only the items currently visible on the screen. This lazy behavior significantly improves performance when dealing with extensive datasets.

Basic Usage

Let’s get started with some code examples. Suppose you want to create a simple list of messages using LazyColumn. Here’s how you can do it:@Composable fun MessageList(messages: List<Message>) { LazyColumn { items(messages) { message -> MessageRow(message) } } }

In the above snippet:

  • We define a MessageList composable that takes a list of Message objects.
  • Inside the LazyColumn block, we use the items function to iterate over the messages and compose each MessageRow.

DSL for Describing Items

The magic of LazyColumn lies in its DSL (domain-specific language). Instead of directly emitting composables like in a regular Column, we work with a LazyListScope block. This scope allows us to describe the item contents efficiently.

Adding Single Items

The most basic function in the DSL is item(), which adds a single item:LazyColumn { item { Text(text = "First item") } items(5) { index -> Text(text = "Item: $index") } item { Text(text = "Last item") } }

Handling Collections

We can also add collections of items using extensions like items() or itemsIndexed():LazyColumn { items(messages) { message -> MessageRow(message) } }

The itemsIndexed() extension even provides the index for more advanced scenarios.

Conclusion

And there you have it! LazyColumn is your go-to solution for efficiently displaying lists in Jetpack Compose. Whether you’re building a chat app, a news feed, or any other data-driven UI, give LazyColumn a try.

Remember, it’s all about being lazy in the right way—rendering only what’s necessary and keeping your UI smooth and responsive. Happy composing! 🎨


References:

  1. Jetpack Compose Lists and Grids
  2. Jetpack Compose World: LazyColumn
  3. Column vs. LazyColumn in Android Jetpack Compose

Source: Conversation with Bing, 3/23/2024
(1) Jetpack Compose | Implementing a LazyColumn / RecyclerView | Part I. https://www.youtube.com/watch?v=_G0ndJLbaJI.
(2) How to Create a Lazy Column With Categories in Jetpack Compose. https://www.youtube.com/watch?v=XfYlRn_Jy1g.
(3) How to Implement a Multi-Select LazyColumn in Jetpack Compose – Android Studio Tutorial. https://www.youtube.com/watch?v=pvNcJXprrKM.
(4) Lists and grids | Jetpack Compose | Android Developers. https://developer.android.com/jetpack/compose/lists.
(5) LazyColumn in Jetpack Compose – Jetpack Compose World. https://jetpackcomposeworld.com/lazycolumn-in-jetpack-compose/.
(6) Column vs LazyColumn in Android Jetpack Compose. https://codingwithrashid.com/column-vs-lazycolumn-in-android-jetpack-compose/.
(7) LazyColumn – Jetpack Compose Playground – GitHub Pages. https://foso.github.io/Jetpack-Compose-Playground/foundation/lazycolumn/.
(8) undefined. https://pl-coding.com/premium-courses/.

The benefits of using a MVVM architecture

Let’s delve into the world of MVVM (Model-View-ViewModel) architecture and explore its advantages. 🚀

Understanding MVVM Architecture

MVVM is a software design pattern that cleanly separates the graphical user interface (View) from the business logic (Model) of an application. It was invented by Microsoft architects Ken Cooper and Ted Peters. The ultimate goal of MVVM is to make the view completely independent from the application logic. Here are the key components of MVVM:

  1. Model: Represents the app’s domain model, including data models, business logic, and validation rules. It communicates with the ViewModel and remains unaware of the View.
  2. View: Represents the user interface of the application. It holds limited, purely presentational logic and is completely agnostic to the business logic. The View communicates with the ViewModel through data binding.
  3. ViewModel: Acts as the link between the View and the Model. It exposes public properties and commands that the View uses via data binding. When state changes occur, the ViewModel notifies the View through notification events.

Advantages of MVVM

  1. Easier Development:
  • Separating the View from the logic allows different teams to work on different aspects of the application simultaneously.
  • Developers can focus on their specific areas (View, ViewModel, or Model) without stepping on each other’s toes.
  1. Easier Testing:
  • UI testing is notoriously challenging. MVVM simplifies this by isolating the business logic in the ViewModel.
  • Unit testing the ViewModel becomes straightforward, as it doesn’t rely on UI components.
  1. Improved Maintainability:
  • The separation between View and ViewModel makes code maintenance more manageable.
  • Changes to the UI (View) won’t impact the underlying logic (ViewModel).
  1. Code Reusability:
  • ViewModel logic can be reused across different Views.
  • For example, if you have similar functionality in multiple screens, you can share the ViewModel code.
  1. Parallel Development:
  • MVVM allows parallel development by enabling different teams to work on different layers.
  • UI designers can focus on the View, while developers handle the ViewModel and Model.

MVVM vs. Other Architectures

  • MVC (Model-View-Controller): MVVM evolved from MVC. While MVC separates applications into three components (Model, View, and Controller), MVVM replaces the Controller with the ViewModel. MVVM aims to minimize code-behind logic in the View.
  • Two-Way Communication: Unlike MVC’s one-way communication (Controller to View), MVVM enables two-way communication between View and ViewModel through data binding.

In summary, MVVM provides a clear separation of concerns, improves maintainability, and enhances testability. It’s a powerful pattern for building robust and scalable applications. So, next time you’re architecting your app, consider embracing MVVM! 🌟

References:

  1. Built In: What Is MVVM Architecture? ¹
  2. Medium: Understanding MVVM Architecture in Android ²
  3. Dev.to: Mastering MVVM ³

Source: Conversation with Bing, 2/26/2024
(1) What Is MVVM Architecture? (Definition, Advantages) | Built In. https://builtin.com/software-engineering-perspectives/mvvm-architecture.
(2) Understanding MVVM Architecture in Android – Medium. https://medium.com/swlh/understanding-mvvm-architecture-in-android-aa66f7e1a70b.
(3) Mastering MVVM: A Comprehensive Guide to the Model-View-ViewModel …. https://dev.to/mochafreddo/mastering-mvvm-a-comprehensive-guide-to-the-model-view-viewmodel-architecture-221g.
(4) Understanding MVVM architecture for Beginners | by Rosh | Medium. https://medium.com/@rosh_dev/understanding-mvvm-architecture-for-beginners-586caaa72179.
(5) Why MVVM and what are it’s core benefits? – Stack Overflow. https://stackoverflow.com/questions/1644453/why-mvvm-and-what-are-its-core-benefits.

Common Code Smells

Let’s explore some of the most common code smells that developers encounter and how to address them. Code smells are indicators of potential issues in your codebase, and recognizing them can lead to better software quality. Here are 31 code smells you should be familiar with:

Dispensables

1. Comments

While comments are essential for documenting code, excessive or confusing comments can be problematic. If your code needs extensive comments to explain its logic, consider refactoring it to make it more self-explanatory.

2. Duplicate Code

Duplication is a common issue that leads to maintenance nightmares. Repeated code fragments should be extracted into reusable functions or classes.

3. Lazy Class

Lazy classes serve no purpose and can be safely removed. If a class lacks functionality or remains unused, consider deleting it.

4. Dead Code

Unused code segments clutter your project and confuse other developers. Regularly clean up dead code to keep your codebase lean.

5. Speculative Generality

Avoid overengineering by creating overly generic solutions. Only add abstractions when necessary, not preemptively.

6. Oddball Solution

Sometimes, developers come up with unconventional solutions that deviate from established patterns. While creativity is valuable, ensure that your solution aligns with best practices.

Bloaters

7. Large Class

Monolithic classes violate the Single Responsibility Principle. Split large classes into smaller, focused ones.

8. Long Method

Long methods are hard to read and maintain. Break them down into smaller functions with clear responsibilities.

9. Long Parameter List

Excessive parameters make method calls cumbersome. Consider using data structures (e.g., objects) to group related parameters.

10. Primitive Obsession

Relying too much on primitive data types (e.g., using strings for everything) leads to code smells. Replace them with custom classes when appropriate.

11. Data Clumps

When several data items consistently appear together, consider encapsulating them into a single object.

Abusers

12. Switch Statements

Switch statements violate the Open-Closed Principle. Use polymorphism or other design patterns instead.

13. Temporary Field

Temporary fields are variables set but never used. Remove them to improve code clarity.

14. Refused Bequest

Inheritance hierarchies can lead to unwanted inherited behavior. Avoid inheriting methods or properties that don’t make sense in the subclass.

15. Alternative Classes with Different Interfaces

Similar classes with different interfaces confuse developers. Aim for consistency in naming and functionality.

16. Combinatorial Explosion

When dealing with multiple flags or options, avoid creating an explosion of combinations. Simplify your design.

17. Conditional Complexity

Complex conditional logic makes code hard to follow. Refactor complex conditions into smaller, more readable expressions.

Couplers

18. Inappropriate Intimacy

Classes that are too tightly coupled violate encapsulation. Reduce dependencies between classes.

19. Indecent Exposure

Avoid exposing internal details unnecessarily. Limit access to what’s essential.

20. Feature Envy

When one class excessively uses methods or properties of another, consider moving the logic to the appropriate class.

21. Message Chains

Chains of method calls between objects create tight coupling. Simplify chains to improve maintainability.

22. Middle Man

Remove unnecessary intermediary classes that merely delegate calls to other classes.

Preventers

23. Divergent Change

If a class frequently changes for different reasons, it violates the Single Responsibility Principle. Split it into smaller, focused classes.

24. Shotgun Surgery

When a single change requires modifications across multiple classes, refactor to reduce the impact.

25. Parallel Inheritance Hierarchies

Avoid creating parallel class hierarchies that mirror each other. Simplify your design.

Other Notable Mentions

26. Inconsistent Names

Use consistent naming conventions to improve code readability.

27. Uncommunicative Name

Choose descriptive names for variables, methods, and classes.

28. Type Embedded in Name

Avoid including type information in variable or method names.

29. Magic Numbers

Replace hard-coded numeric values with named constants or enums.

30. Incomplete Library Class

Extend library classes when necessary rather than duplicating their functionality.

31. Inconsistent Formatting

Maintain consistent code formatting throughout your project.

Remember, code smells are hints, not certainties. Use them as a guide to improve your codebase and write cleaner, more maintainable software. Happy coding! 🚀

For more in-depth exploration of code smells, check out the official Detekt documentation.

¹: [Pragmatic Ways – 31 code smells all developers should be familiar with](https://pragmaticways.com/31-code-smells-you-must

Source: Conversation with Bing, 2/15/2024
(1) 31 code smells all developers should be familiar with – Pragmatic Ways. https://pragmaticways.com/31-code-smells-you-must-know/.
(2) Identifying and addressing Kotlin code smells – LogRocket Blog. https://blog.logrocket.com/identifying-addressing-kotlin-code-smells/.
(3) Uncovering the Scent of Code: Understanding and Eliminating Code Smells …. https://medium.com/multinetinventiv/uncovering-the-scent-of-code-understanding-and-eliminating-code-smells-a3e620b1abae.
(4) 5 most common code smells that you should avoid – Medium. https://medium.com/geekculture/5-most-common-code-smells-that-you-should-avoid-86ae41cb1dc7.
(5) What are Code Smells? (Examples with Solutions) | Built In. https://builtin.com/software-engineering-perspectives/code-smells.

Using Detekt in Android Studio Projects

Let’s dive into how you can integrate Detekt into your Android Studio projects to improve code quality. Detekt is a powerful static code analysis tool for Kotlin that helps identify code smells and enforce best practices. Here’s a step-by-step guide:

Integrating Detekt in Android Studio Projects

1. Understanding Detekt

Detekt is designed to enhance your codebase by enforcing a set of rules. It’s particularly useful when collaborating with a team of developers. Some key features of Detekt include:

  • Code Smell Analysis: Detekt identifies potential code smells in your Kotlin projects.
  • Highly Configurable: You can customize Detekt according to your specific needs.
  • Suppression Options: Suppress findings if you don’t want warnings for everything.
  • IDE Integration: Detekt integrates seamlessly with Android Studio.
  • Thresholds and Baselines: Specify code-smell thresholds to break builds or print warnings.

2. Adding Detekt to Your Project

To integrate Detekt into your Android project, follow these steps:

  1. Open Android Studio and sync your project with the Gradle files.
  2. Add Detekt Gradle Plugin: In your project’s build.gradle file, add the Detekt Gradle plugin as a dependency. For example:
    gradle plugins { id("io.gitlab.arturbosch.detekt") version "1.18.1" }
  3. Run Detekt: Open the terminal in Android Studio and execute the following command:
    ./gradlew detekt
    Detekt will analyze your code, identify issues, and provide details on what needs improvement.

3. Rule Sets in Detekt

Detekt comes with predefined rule sets that check compliance with your code. These rules focus on improving code quality without affecting your app’s functionality. Here are some common rule sets:

  • Comments: Addresses issues in comments and documentation.
  • Complexity: Reports complex code, long methods, and parameter lists.
  • Coroutines: Analyzes potential coroutine problems.
  • Empty Blocks: Identifies empty blocks of code.
  • Exceptions: Reports issues related to exception handling.
  • Formatting: Checks codebase formatting (indentation, spacing, etc.).
  • Naming: Enforces naming conventions for classes, packages, functions, and variables.

Remember that Detekt is highly configurable, so you can tailor it to your project’s specific needs.

4. Custom Rules and Processors

Detekt allows you to add your own custom rules and processors. If you encounter specific patterns or code smells unique to your project, consider creating custom rules to catch them.

Conclusion

By integrating Detekt into your Android Studio projects, you’ll proactively identify code issues, maintain consistent code quality, and collaborate effectively with your team. Happy coding! 🚀

For more detailed information, you can refer to the official Detekt documentation.


I hope you find this guide helpful! If you have any further questions or need additional assistance, feel free to ask. 😊

Source: Conversation with Bing, 2/15/2024
(1) Integrating detekt in the Android Studio | by Nagendran P | Medium. https://medium.com/@nagendran.p/integrating-detekt-in-the-android-studio-442128e971f8.
(2) Integrating detekt in the Workflow | Kodeco. https://www.kodeco.com/24470020-integrating-detekt-in-the-workflow.
(3) How to Analyze Your Code with Detekt | by Maria Luíza – Medium. https://medium.com/mobile-app-development-publication/how-analyze-your-code-with-detekt-37be6c9c9105.
(4) detekt – IntelliJ IDEs Plugin | Marketplace – JetBrains Marketplace. https://plugins.jetbrains.com/plugin/10761-detekt.
(5) How to use detekt on a daily basis (in a multi module Android project …. https://proandroiddev.com/how-to-use-detekt-in-a-multi-module-android-project-6781937fbef2.
(6) undefined. https://detekt.github.io/detekt/configurations.html%29.
(7) Improve Code Quality Using Static Code Analysis With detekt. https://williamkingsley.medium.com/improve-code-quality-with-static-code-analysis-using-detekt-454b7e66d2ec.
(8) Adding Detekt to your Android project – Since Last Commit. https://blog.asadmansoor.com/adding-detekt-to-your-android-project/.

%d bloggers like this: