In this article I’m going to touch on the sorting algorithm called Quicksort. Its worst case time complexity is O(n^2) and its best case time complexity is O(nlogn). Firstly the method we are going to make is going to take a generic array and those elements should implement the Comparable interface so they can be sorted. Take this Circle class for example. When you implement the Comparable interface you specify in the compareTomethod what makes a circle greater than, less than, or equal to another circle. In this example we return whether the radius of the circle is bigger or smaller than the circle it is being compared to.
Circle.java
/**
* author: copypasteearth
* date: 7/17/2019
*/
public class Circle implements Comparable<Circle> {
public int xValue;
public int yValue;
public int radius;
@Override
public int compareTo(Circle o) {
return (this.radius - o.radius);
}
@Override
public String toString() {
return "x: " + xValue + " ---y: " + yValue + " ---radius: " + radius;
}
}
Next we create the Quicksort class that has the method quicksort and a main method to test out the quicksort method. The quicksort method is a recursive method and the base case is if(a < b). The method goes through the generic array and sorts the elements based on what the compareTo method tells it. Here is the Quicksort class.
Quicksort.java
/**
* author: copypasteearth
* date: 7/17/2019
*/
import java.util.Random;
public class QuickSort<T extends Comparable<T>> {
public static <T extends Comparable<T>> void quicksort(T[] array, int a, int b) {
if (a < b) {
int i = a, j = b;
T x = array[(i + j) / 2];
do {
while (array[i].compareTo(x) < 0) i++;
while (x.compareTo(array[j]) < 0) j--;
if ( i <= j) {
T tmp = array[i];
array[i] = array[j];
array[j] = tmp;
i++;
j--;
}
} while (i <= j);
quicksort(array, a, j);
quicksort(array, i, b);
}
}
public static void main(String[] args) {
Integer[] integerarray = {50, 55, 11, 89, 90, 1, 20, 11};
QuickSort<Integer> qsinteger = new QuickSort<Integer>();
qsinteger.quicksort(integerarray, 0, integerarray.length-1);
for(Integer i: integerarray) {
System.out.println(i);
}
String[] stringarray = {"bird","moth","apple","zebra","banana","desert","pig"};
QuickSort<String> qsstring = new QuickSort<String>();
qsstring.quicksort(stringarray, 0, stringarray.length-1);
for(String i: stringarray) {
System.out.println(i);
}
Circle[] circlearray = new Circle[20];
Random rand = new Random();
for (int index = 0; index < 20; index++)
{
circlearray[index] = new Circle();
circlearray[index].xValue = Math.abs(rand.nextInt()) % 100;
circlearray[index].yValue = Math.abs(rand.nextInt()) % 100;
circlearray[index].radius = Math.abs(rand.nextInt()) % 100;
}
System.out.println("Circle Array Unsorted....");
for(int i = 0;i < 20;i++){
System.out.println(circlearray[i]);
}
QuickSort<Circle> qscircle = new QuickSort<Circle>();
qscircle.quicksort(circlearray, 0, circlearray.length-1);
System.out.println("Circle Array Sorted");
for(Circle i: circlearray) {
System.out.println(i);
}
}
}
If you run this code you will see the results from the main method. First it sorts an Integer array and then a String array. Then it makes a Circle array and prints them out unsorted then it sorts them and then prints them out again sorted. That pretty much does it for this example on quicksorting. In the future I will probably go through the rest of the sorting algorithms. Hope you enjoyed it.
Donate or Subscribe to support Copypasteearth!!!!!
New Amazon Fire HD 8 Kids tablet, ages 3-7. With bright 8" HD screen. Includes ad-free and exclusive content, parental controls and 13-hr battery, 32GB, Blue, (2024 release)
$69.99 (as of December 4, 2024 21:38 GMT -05:00 - More infoProduct prices and availability are accurate as of the date/time indicated and are subject to change. Any price and availability information displayed on [relevant Amazon Site(s), as applicable] at the time of purchase will apply to the purchase of this product.)Amazon Fire 10 HD Kids tablet (newest model) ages 3-7 | Bright 10.1" HD screen with included ad-free and exclusive content, robust parental controls, 13-hr battery, 32 GB, Blue
$109.99 (as of December 4, 2024 21:38 GMT -05:00 - More infoProduct prices and availability are accurate as of the date/time indicated and are subject to change. Any price and availability information displayed on [relevant Amazon Site(s), as applicable] at the time of purchase will apply to the purchase of this product.)Amazon Fire Max 11 tablet (newest model) vivid 11” display, all-in-one for streaming, reading, and gaming, 14-hour battery life, optional stylus and keyboard, 128 GB, Gray, without lockscreen ads
$169.99 (as of December 4, 2024 21:38 GMT -05:00 - More infoProduct prices and availability are accurate as of the date/time indicated and are subject to change. Any price and availability information displayed on [relevant Amazon Site(s), as applicable] at the time of purchase will apply to the purchase of this product.)New Amazon Fire HD 8 tablet, 8” HD Display, 3GB memory, 32GB, designed for portable entertainment, Black, (2024 release)
$99.99 (as of December 4, 2024 21:38 GMT -05:00 - More infoProduct prices and availability are accurate as of the date/time indicated and are subject to change. Any price and availability information displayed on [relevant Amazon Site(s), as applicable] at the time of purchase will apply to the purchase of this product.)New Amazon Fire HD 8 tablet, 8” HD Display, 3GB memory, 32GB, designed for portable entertainment, Emerald, (2024 release)
$99.99 (as of December 4, 2024 21:38 GMT -05:00 - More infoProduct prices and availability are accurate as of the date/time indicated and are subject to change. Any price and availability information displayed on [relevant Amazon Site(s), as applicable] at the time of purchase will apply to the purchase of this product.)Author: John Rowan
I am a Senior Android Engineer and I love everything to do with computers. My specialty is Android programming but I actually love to code in any language specifically learning new things.